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The authors propose a method of calculating the effective thermal
conductivity of multicomponent mixtures as a function of their struc-
ture, the thermal conductivities of the components, their concentra-
tions, and other parameters.

We call a system consisting of two or moremateri-
als with different physical properties a multicompo-
nent mixture. Multicomponent mixtures can be divided
into three principal structural classes: 1) structure
with noncommunicating components, I} structure with
communicating components, and III) intermediate
structure, a combination of structures I) and II). The
first class of mixtures includes those with a structure
composed of individual noncommunicating inclusions
2, 3 of arbitrary shape randomly or regularly distrib-
uted in a matrix 1 (Fig.la). The second class includes
structures composed of interconnecting inclusions 2,

3 in a matrix substance 1 (Fig.1b). The distinction be-
tween inclusions and matrix is an arbitrary one, since
the structural components 2 and 3 could be called the
matrix and component 1 an inclusion. The second and
third classes of mixtures embrace a much greater
number of natural and artificial materials than the
first: for example, solids with intercommunicating
pores, reinforced structures, fibrous and granular
materials, mixtures of different solids. some alloys,
liquid-permeated soils, etc.

Since the end of the nineteenth century many at-
tempts have been made to obtain theoretical expres~
sions relating the thermal conductivity and other trans-
port coefficients (electrical conductivity, dielectric
constant, etc.) with the characteristic parameters, in
particular: the structure of the mixture, the shape and
size of the inclusions, their orientation relative to the
flow, and the thermal conductivity and concentration of
the individual components. These studies were made
for mixtures of the first class and for the most part
reduced to a determination of the effect of the shape of
the inclusions and their orientation on the effective
transport coefficients. The fullest review of the re-
sults of this research may be found in [1, 2].

Heat transfer processes in mixtures of the first
class have been investigated by a number of authors of
whom V.I. Odelevskii [3], in our opinion, adopted the
most correct approach. Odelevskii proposed the fol-
lowing expression for the effective thermal conductiv-
ity of a two-component mixture:

7»:7»1[1—— i ] =22, (1)
Ul —v) —(1—P)3 xl

The effective thermal conductivity of mixtures with
communicating inclusions has received less attention.

In [4] Dul' nev established a theoretical relation be-
tween the effective thermal conductivity and the char-
acteristic parameters for a two-component mixture of
this class. Comparison of calculation and experiment
for various building materials, porous ceramics, re-
fractories [5}, some alloys, water- or oil-saturated
soils, and other materials indicates satisfactory
agreement.

As far as we know, A for mixtures of the first and
second classes has been theoretically investigated only
for two-component mixtures * However, in practice,
extensive use'is being made of systems with more than
two components. The theoretical investigation of the
effective thermal conductivity of such systems is of
definite importance. The problem consists in estab-
lishing the form of the functional dependence of A on
the characteristic parameters, i.e.,

A=O0y, Ay Agy oonn Ay Pu Py, P, oo, P (2)

We have been unable to find in the literature analyt-
ical relations for determining the effective thermal
conductivity of mixtures with more than two compo-
nents. The only exceptions are certain relations for
gas mixtures [8]. An analytic expression for the effec-
tive thermal conductivity of multicomponent mixtures
can be obtained in various ways:

1. By simultaneously allowing for the thermal con-
ductivity and concentration of all the components of the
multicomponent structure.

2. By successively reducing the structure of the
multicomponent mixture to the structure of a two~com-
ponent mixture whose effective thermal conductivity is
determined using known analytic relations.

We will examine both these methods with reference
to the example of a three-component mixture withnon-
communicating inclusions. Let this mixture consist of
a matrix | and separate inclusions 2 and 3 whosether-
mal conductivities and volume concentrations are re-
spectively equal to Ay, Ay, Ay and Py, Py, P;. Weim-
pose the following restrictions:

1. The components do not interreact.

2. The dimensions of the inclusions are similar in
the three principal directions (differ by a factor of
not more than 2), and are much smaller than the di-
mensions of the mixture.

*As shown in [7], at the limits Odelevskii's formu-
la for multicomponent statistical mixtures [6] leads to
contradictory results.
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Fig. 1. Structural classes of multicomponent mixtures:

a) structure with noncommunicating components,
b) with communicating components, c) intermediate

(combined) structure.

0180

RI—B

v

/MPM.
A A

) »
cl2lol e

oo
B o2rel2
O@OO{W
O I ®
o1 Ui 0

oOL®
Olel=lol9

Fig. 2. Three-component mixture with noncommuni~
cating components: a) schematic representation of

mixture, b

elementary block, c¢) thermal resistance

)

connection diagram.
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EFFECTIVE THERMAL CONDUCTIVITY OF A MIX-
TURE WITH NONCOMMUNICATING INCLUSIONS

To analyze the heat transfer process we employed
the method proposed in [4]. We assume that the inclu-
sions 2 and 3 are uniformly distributed in the matrix
1, i.e., "long-range order" exists in the mixture.
Such a mixture is represented schematically in Fig.
2a.

From this mixture we can separate individual lay-
ers perpendicular to the heat flow whose effective
thermal conductivity is equal to that of the mixture.
Upon examining the structure of the layer we can dis-
tinguish the " elementary blocks? (within the broken
lines) which combine to form the entire mixture.
Each block is composed of two types of cubical "unit
cells" (Fig. 2b), the quantitative relationship be-
tween which is uniquely determined by the volume
concentrations of the components P,y and P3, If we
assume that the unit cells in a block are separated
by infinitely thin adiabatic planes (Fig. 2c), we can
define the thermal resistance of the block Rp as
follows:

Ry s Ry _ l

R, = -
T NR,+KR_, A8,

Chy=h (3

where
S= (N +K)2

Taking into account the relation between N, K, and
P,, P;, we can bring Eqg. (3) to the form

P2 1 P3 1

A= . )
Pyt Py [Riy Py Py IR,

We find the thermal resistances of the unit cells Ry
using Eq. (1):

: —1
R = hi—[ I— P )
I V(=) — (1 —P)/3

Vig .:_7“"_, P_,=P,+P,=1—"P,. (5)
}"1
Substituting the value obtained for Ry-i in (4),
after some simple transformations we obtain an ex-
pression for the effective thermal conductivity of a
three~component mixture with noncommunicating in-

clusions:
/(1 —vmp) — Py/3

p
= 2 1 —
g KI{I—PLI:
1— P ]} (6)

Py
* 1—pP \ (L —vig) —Py3 ]

1 —P, ];

Equation (6) satisfies the conditions at the limits.
When Pyor Py = 0, we arrive at Eq. (1). When
vi—i = 1 the effective thermal conductivity of the mix-
ture A =A,. Thus, Eq.(6) can be recommended for
determining the effective thermal conductivity of a
three-component mixture with noncommunicating com-
ponents. However, as the number of components in-
creases, Edg.(6) becomes rapidly more complicated
and unsuitable for calculations.
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We will use the second method of determining the
effective thermal conductivity of the multicomponent
mixture as a function of the characteristic param-
eters.

Fig. 3. Structure of a three-component mix-
ture reduced to the structure of a two-com-
ponent mixture.

We will consider a three-component mixture with
noncommunicating inclusions. The solution is car-
ried out in stages. In the first stage we imagine that
the third component has been removed from the mix-
ture (Fig. 1la). This reduces the three-component mix-
ture to a two-component structure with noncommuni-
cating inclusions. But in this case in the reduced
two-component mixture it is necessary to take into
account the change in the ratio of the component con-
centrations. We denote the volume concentration of
the first component in the reduced two-component
mixture by P'v that of the second component by
P, =1 — PY. It is easy to show that P} and P} are
related with P, and P, by the simple expression

Py=PJ(Py+ P,); Py=Py/(P,+P,). (1)
Knowing the thermal conductivity of the components
and the values of P} and P} we can determine the
effective thermal conductivity of the reduced two-conr
ponent mixture using Eq. (1), i.e..

s = /I1(7‘rlv 7»2, Pl’ Pz)- (8>

We can now assume that part of the volume of the
three~component mixture corresponding to the volume
concentration Py_, =P; +P, has the effective thermal
conductivity A_, (Fig. 3).

In the second stage of the calculations we take into
account the presence of the third component. Weagain
obtain a two-component mixture with volume concen-
trations P,-,s P; and thermal conductivities A;_; and
A3, respectively. We again use Eq. (1) and determine
the effective thermal conductivity of the initial three-
component mixture

}V=CD1(7“1: As, 7‘3: Pu Pz’ P3\f =
=@y (M—gs Ay Pi—g P). (9)

We note that in a mixture with noncommunicating
inclusions the latter are geometrically nonequivalent,
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i.e., the thermal conductivity of the matrix has a
greater influence on the effective thermal conductiv-
ity of the mixture. Therefore, in Eq. (1) the indices
of the matrix and the inclusions cannot be transposed,
since this leads to a significant change in the value of
the effective thermal conductivity of the mixture [3].
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Fig. 4. Graph of the function X = X(P).

The sequence in which the inclusions are dealt with is
a matter of indifference since the inclusions are geo-
metrically equivalent,

EFFECTIVE THERMAL CONDUCTIVITY OF A MIX-
TURE WITH COMMUNICATING COMPONENTS

In order to determine the effective thermal conduc-
tivity of a mixture with communicating components we
will also use the method of successive reduction ofthe
structure of a multicomponent mixture to the structure
of a two-component mixture (Fig.1b). However, in
such a structure the components are geometrically
equivalent and may be combined in any order. Inthe
first stage of calculation, taking any pair of compo-
nents (for example, 2-3), we determine their effec-
tive thermal conductivity

ha—g = f5(ha, Ay, P;‘ Pd) {10)

as the effective thermal conductivity of a mixture with
communicating components from their thermal conduc~
tivities and reduced volume concentrations using the
expression proposed in [4]:

XU =X J (11)

A=A | X2+ v —X)? + LS
‘[ * ) v X (1 —X)
The parameter X is related with the volume con-

centration as follows:

P=2X3—3X2- 1. (12)

Figures 4 and 5 are intended to facilitate the cal-
culations.

We can now assume that part of the volume of the
three-component mixture corresponding to the volume
concentration Py—3 =P, + P; has an effective thermal
conductivity A4 ;. In the second stage of the calcula-
tion we determine the effective thermal conductivity
of the three-component mixture as a whole:

7“:‘@2(}\1» Ae, Ags Py, Py, P:s):
=@y (A1 Mgy, Py, Ppy). (13)
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EFFECTIVE THERMAL CONDUCTIVITY OF COM-
BINED MIXTURES

The effective thermal conductivity of combined mix-
tures (Fig.lc) may be determined by reduction to the
structure of a two-component mixture. In combined
mixtures the geometrical nonequivalence of the com-
ponents is preserved. Therefore in the first stage of
the calculation we determine the effective thermal con-
ductivity of the part of the structure formed by the
communicating components from their thermal conduc-
tivities and reduced volume concentrations. For this
purpose we employ Eqg.(11), i.e.,

My = fa (0, A PL, Pa). (14)

In the second stage of the calculation we determine
the effective thermal conductivity of the three-compo-
nent mixture reduced to the structure of a mixture
with noncommunicating inclusions, i.e.,

A==y (A. My, by, Py, Py, Py)=
=@y (M- ko, Pr—s Po)- (15)

We note that in the second stage of the calculation
transposition of the indices of the matrix and the in-
clusions is not permissible.

By successive applications of the method proposed
it is possible to determine the effective thermal con-
ductivity of a mixture with any number of components.
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Fig. 5. Graph of the function A/A; = f(P, v).

Since in multicomponent mixtures the concentrations
of the components are often given by weight, itis worth-
while giving the relation between the concentrations by

- weightand volumen and P, respectively. By definition

P=uyv, n=GyG, (16)

where vy and v are the volumes of the admixture and
the mixture; G4 and G are the weights of the admix-
ture and the mixture. Denoting by v;, ¥, and 7y the
specific weight of the components and the mixture as a
whole, we find

ne=2 _ V2% _pYe
G YU Y
but
G 0 Uy v —v,
YZ—ZY- s + Vi ( 2) = v,P +y,(1—P).

v 14



JOURNAL OF ENGINEERING PHYSICS

After simple transformations we obtain the relation
between v/v, and P:

1 9
Y oopyp—(1—pP), =Y. (17)
Y2 U] Y1

From (16) and (17) it follows that

n

Pe=— = . (18)
n+a{l—n

If the concentrations of the components are given
in at.%, we can use the relation between the con-
centration by weight and the atomic concentrationpro-
posed in [9]

n:lOOa/[a—}—-%(lOO—‘a)}, (19)

A

where A, B are the atomic weights of the components,
and 2 is the concentration in at, %.

NOTATION

A is the effective thermal conductivity of multicom-
ponent mixture; A, is the thermal conductivity of the
matrix; A,is the thermal conductivity of inclusions;

P is the volume concentration of inclusions; A is the
thermal conductivity of the i~th component; Pj is the
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volume concentration of the i-th component; R is the
thermal resistance; [ is the dimension of the unit
cell; n is the concentraticn by weight; N, K are the
number of unit cells in the block.
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